Increased Risk of Pneumococcal Pneumonia Among HIV and Influenza Co-Infected Patients Hospitalized with Pneumonia in South Africa, 2009-2010

Presented by
Stefano Tempia
(on behalf of the SARI Investigators Team)

Nicole Wolter, Cheryl Cohen, Stefano Tempia, Mignon du Plessis, Michelle Groome, Jocelyn Moyes, Sibongile Walaza, Babatyi Kgokong, Marthi Pretorius, Marietjie Venter, Halima Dawood, Kathleen Kahn, Ebrahim Variava, Shabir A Madhi, Keith Klugman, Anne von Gottberg
Pneumonia and *Streptococcus pneumoniae*

- Leading cause of morbidity and mortality.

- 2008: ± 1.5 million children <5 years of age died from pneumonia.

- South Africa, 2008: pneumonia 2nd most common natural cause of death in children <15 years (12.4% of deaths).

- *Streptococcus pneumoniae* (pneumococcal) – common and often predominant, bacterial cause of pneumonia.

- 2000: ± 13.8 million cases of pneumococcal pneumonia occurred in children < 5 years of age.

Global burden of pneumococcal disease in children under 5

Source: GAVI Alliance, www.gavialliance.org, October 2011
Diagnosis of Pneumococcal Pneumonia

- Etiological-specific diagnosis of pneumococcal pneumonia is difficult.

- Gold standard: Blood culture from normally sterile sites.

- High specificity, but low sensitivity, slow, influenced by prior antibiotic therapy and need large volumes of blood.

- Alternatives: urinary antigen detection (Binax NOW) and sputum collection are influenced by nasopharyngeal carriage.

- Real-time PCR: sensitive, fast, not influenced by prior antibiotic therapy.

- Specificity determined by target – lytA (autolysin).

- lytA not detected in blood of healthy controls.

Aim

To use quantitative real-time PCR to:

- Determine the prevalence of pneumococcal DNA in patients with hospitalised pneumonia during the introduction of the Heptavalent Pneumococcal Conjugate Vaccine (PCV7) in South Africa.

- To identify risk factors for pneumococcal pneumonia.
Methods

• Severe Acute Respiratory Illness (SARI) surveillance programme: prospective hospital-based surveillance programme initiated in February 2009.

• Aims to describe the etiology and risk factors of community-acquired pneumonia in South Africa.
SARI surveillance sites

Chris Hani Bara
Temperate, urban

Agincourt
Sub-tropical, rural

Klerksdorp
Temperate peri-urban

Edendale
Sub-tropical, peri-urban
Severe Acute Respiratory Illness (SARI) Surveillance Programme

Patients with hospitalised pneumonia

- Clinical and epidemiological data
- Whole blood in EDTA-tube
- Naso/oropharyngeal swab/aspirate in viral transport medium

 Pneumococcal detection by quantitative real-time PCR (lytA)
 HIV testing by ELISA/PCR
 Real-time reverse transcription PCR detection of 10 respiratory viruses
 Influenza subtyping by real-time reverse transcription PCR

May 2009-December 2010
Results

- May 2009-December 2010: 6910 SARI cases enrolled.
- *S. pneumoniae* results were obtained from 74% (5130/6910).
- 46% (2345/5130) were males.
- 40% (2075/5130) were children ≤ 5 years.
- Of 92% (4702/5130) patients with known HIV status, 54% (2532/4702) were HIV positive:

<table>
<thead>
<tr>
<th>Age Groups</th>
<th>HIV infection % (n/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2</td>
<td>15% (223/1453)</td>
</tr>
<tr>
<td>2-5</td>
<td>24% (81/334)</td>
</tr>
<tr>
<td>6-18</td>
<td>52% (79/151)</td>
</tr>
<tr>
<td>19-44</td>
<td>87% (1606/1850)</td>
</tr>
<tr>
<td>44+</td>
<td>59% (543/914)</td>
</tr>
</tbody>
</table>
Results

• Of 5096/5130 (99%) cases with influenza results, 478 (9%) were positive for influenza.

• Influenza subtype could be obtained from 467 (98%) positive samples.
Results

Percentage of hospitalized pneumonia cases PCR-positive for pneumococcal \textit{lytA} by age group, South Africa, 2009-2010

Overall prevalence 7\% (372/5130)
Results

• Blood cultures were performed at the discretion of the respective hospital as part of in-patient care.

• Blood cultures were performed on 897 cases.

• 2% (19) were positive for pneumococcus on blood culture.

• 10% (94) were positive for pneumococcus on PCR.

PCR five-fold higher detection rate than blood culture
Influenza virus and *S. pneumoniae* Detection Rate (%), SARI Surveillance, South Africa – May 2009 through December 2010
Factors associated with pneumococcal infection (*lytA* positive) amongst patients with hospitalized pneumonia, South Africa, 2009-2010

<table>
<thead>
<tr>
<th>Variable</th>
<th>SARI cases n (%)</th>
<th>lytA positive cases n (%)</th>
<th>lytA negative cases n (%)</th>
<th>Odds Ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV infection</td>
<td>N=4614*</td>
<td>N=341*</td>
<td>N=4273*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza co-infection</td>
<td>2487 (54)</td>
<td>248 (73)</td>
<td>2239 (52)</td>
<td>1.9 (1.5-2.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Time from symptom onset >2 days</td>
<td>3302 (72)</td>
<td>290 (85)</td>
<td>3012 (70)</td>
<td>1.9 (1.4-2.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hospital stay >5 days</td>
<td>2160 (47)</td>
<td>204 (60)</td>
<td>1956 (46)</td>
<td>1.3 (1.1-1.7)</td>
<td>0.015</td>
</tr>
<tr>
<td>Death</td>
<td>255 (6)</td>
<td>35 (10)</td>
<td>220 (5)</td>
<td>1.7 (1.1-2.5)</td>
<td>0.008</td>
</tr>
<tr>
<td>Received antibiotics in previous 24 hrs</td>
<td>229 (5)</td>
<td>10 (3)</td>
<td>219 (5)</td>
<td>0.5 (0.3-0.9)</td>
<td>0.035</td>
</tr>
</tbody>
</table>
Conclusions

• 7% pneumococcal pneumonia detected amongst severe pneumonia cases.

• Although still lower than the true burden of pneumococcal pneumonia is thought to be, real-time PCR detected five-fold more cases than detected by blood culture.

• Real-time PCR as a diagnostic tool: fast, not dependent on viability of the pathogen.

• HIV infection or influenza co-infection are significant risk factors for pneumococcal disease.

• Of all hospitalized pneumonia patients in this study, those with pneumococcal pneumonia had a higher risk of dying compared to all other causes of pneumonia.
SARI Acknowledgments 2011

SARI Surveillance Programme Members 2011*

National Institute for Communicable Diseases a division of the National Health Laboratory Service:

Executive Director: Shabir Madhi

Epidemiology and Surveillance Unit: Lucille Blumberg, Cheryl Cohen, Babatyi Malope-Kgokong, Jo McNerney, Jocelyn Moyes, Veerle Msimang Barry Schoub, Sibongile Walaza

Respiratory Virus Unit: Dhamari Naidoo, Orienka Hellferscee, Marthi Nieuwoudt, Florette K Treurnicht, Marietjie Venter

Respiratory and Meningeal Pathogens Reference Unit: Maimuna Carrim, Mignon Du Plessis, Victoria Magomani, Fahima Moosa, Akhona Tshangela, Anne von Gottberg, Nicole Wolter

Specialized Molecular Diagnostic Unit: Mark Goosen, Deidre Greyling, Adrian Puren

Virus Isolation Unit: Amelia Buys

Chris Hani Baragwanath Hospital: Andrew Black

Department of Science and Technology / National Research Foundation: Vaccine Preventable Diseases Unit: Kieyele Bosco, Michelle Groome, David Moore

Edendale Hospital: Meera Chhagan, Halima Dawood, Sumayya Haffejee, Fathima Naby, Douglas Wilson

Emory University, Atlanta USA: Keith Klugman

Klerksdorp/Tshepong Hospital Complex: Erna du Plessis, Omphile Mekgoe, Ebrahim Variava

MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt): Kathleen Kahn, Stephen Tollman, Rhian Twine

South African National Department of Health - Communicable Diseases Directorate: Frew Benson, Charles Mugero

United States Centers for Disease Control and Prevention (CDC): Adam Cohen, Stefano Tempia

*In alphabetical order

All the patients who kindly agreed to participate in the surveillance

Data Entry Team
Nireshni Naidoo
Boitumelo Letlape
Debra Mathebula
Venson Ndhlouv
Kelebogile Motsepe
Robert Musetha
Mpho Ntoy
Shirley Mhlari
Thembinkosi Matiwane
Dimakatso Maraka

Surveillance Officers & Research Assistants*
Ulencha Chetty
Margaret Hlobo
Sandra Kashe
Agnes Kena
Tselane Makgoba
Julia Malapane
Wisdom Malinga
Sipatsho Matshogo
Jacob Mongale
Nomathemba Mofokeng
Bekike Ncwana
Wendy Ngubane
Maureen Nkosi
Samaria Nkosi
Andrina Sambo
Gabisile Senne
Nelly Sigasa
Khadija Shangase

*In alphabetical order